
On Distributability in Process Calculi 21

Appendix

This Appendix contains additional definitions, explanations, examples, and the
formal proofs.

A Process Calculi

A.1 The Pi-Calculus

We introduce the pi-calculus as described e.g. in [14, 13]. We introduce three
different variants of the monadic pi-calculus. The first is the full synchronous
pi-calculus including mixed choice.

Definition 9 (πm). The set of process terms of the synchronous pi-calculus
(with mixed choice), denoted by Pm, is given by

P ::= P1 | P2 | X | (νn)P | !P |
∑

i∈I

πi.Pi

π ::= y〈z〉 | y(x) | τ

for some names n, x, y, z ∈ N and a finite index set I .

The interpretation of the defined process terms is as usual. Restriction (νn)P
restricts the scope of the name n to the definition of P . The parallel composition
P1 | P2 defines the process in which P1 and P2 may proceed independently,
possibly interacting using shared links. !P denotes replication. The process term∑
i∈I πi.Pi represents finite guarded choice; as usual, the sum

∑
i∈{ 1,...,n } πi.Pi

is sometimes written as π1.P1 + . . . + πn.Pn and 0 abbreviates the empty sum,
i.e., where I = ∅.

The capabilities of the pi-calculus are the (replicated) input prefix y(x), the
output prefix y〈z〉, and the prefix τ , where the capability of a choice-term is the
conjunction of the prefixes of all its branches. The input prefix y(x) is used to
describe the ability of receiving the value x over link y and, analogously, the
output prefix y〈z〉 describes the ability to send a value z over link y. The prefix
τ describes the ability to perform an internal, not observable action. Prefixes
and choice are guards, and all their subterms are guarded. Hence, the branches
of sums are always guarded.

The definitions of free and bound names are completely standard, i.e., names
are bound by restriction and as parameter of input and n(P) = fn(P)∪bn(P) for
all P . We naturally extend substitutions to co-names, i.e., ∀n ∈ N . σ(n) = σ(n)
for all substitutions σ.

As usual, the continuation 0 is often omitted, so y(x).0 becomes y(x). In
addition, for simplicity in the presentation of examples, we sometimes omit an
action’s object when it does not effectively contribute to the behaviour of a term.
Typically, we do this when it would be enough to use a CCS-like example, but
the monadic pi-calculus would force us to carry some object along that would

22 K. Peters, U. Nestmann, U. Goltz

never be used on a receiver side, e.g. as in y(x) .0, which would be written as y.0
or just y. Moreover, let (νx̃)P abbreviate the term (νx1) . . . (νxn)P .

The expressive power of πm is compared to two of its subcalculi: πs, the pi-
calculus with separate choice, and πa, the asynchronous pi-calculus. In πs, both
output and input can be used as guards, but within a single choice term either
there are no input or no output guards, i.e., we have input- and output-guarded
choice, but no mixed choice.

Definition 10 (πs). The set of process terms of the pi-calculus with separate
choice, denoted by Ps, is given by

P ::= P1 | P2 | X | (νn)P | !P |
∑

i∈I

πOi .Pi |
∑

i∈I

πIi .Pi

πO ::= y〈z〉 | τ and πI ::= y(x) | τ

for some names n, x, y, z ∈ N and a finite index set I .

As expected, the definitions of πs and πm differ in the definition of choice only.
Asynchronous variants of the pi-calculus were introduced independently by

[10] and [3]. In asynchronous communication, a process has no chance to directly
determine, i.e., without a hint by another process, whether a value sent by it
was already received or not. To model that fact in πa, output actions are not
allowed to guard a process different from 0. Accordingly, the interpretation of
output guards within a choice construct is delicate. Here, we use the standard
variant of πa, where choice is not allowed at all. Since πa has no choice, and thus
no nullary choice, we include 0 as a primitive.

Definition 11 (πa). The set of process terms of the asynchronous pi-calculus,
denoted by Pa, is given by

P ::= 0 | P1 | P2 | X | (νn)P | !P | τ.P | y〈z〉 | y(x) .P

for some names n, x, y, z ∈ N .

The operational semantics of πm, πs, and πa are jointly given by the transition
rules in Figure 3, where the indices m, s, and a refer to rules of πm, πs, and πa,
respectively. The structural congruence, denoted by ≡, is given by the rules:

P ≡ Q if P ≡α Q (νn) 0 ≡ 0 P | 0 ≡ P P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R (νn) (νm)P ≡ (νm) (νn)P

P | (νn)Q ≡ (νn) (P | Q) if n /∈ fn(P) !P ≡ P | !P

A.2 The Join-Calculus

Now, we introduce the join-calculus as described e.g. in [7] or [27].

On Distributability in Process Calculi 23

Taum,s

∑
i∈I πi.Pi 7−→ Pi if ∃i ∈ I . πi = τ

Comm,s

∑
i∈I1

πi.Pi |
∑
j∈I2

πj .Pj 7−→ { z/x }Pi | Pj
if ∃i ∈ I1 . πi = y(x) ∧ ∃j ∈ I2 . πj = y〈z〉

Taua τ.P 7−→ P Coma y(x) .P | y〈z〉 7−→ { z/x }P

Parm,s,a
P 7−→ P ′

P | Q 7−→ P ′ | Q Resm,s,a
P 7−→ P ′

(νn)P 7−→ (νn)P ′

Congm,s,a
P ≡ Q Q 7−→ Q′ Q′ ≡ P ′

P 7−→ P ′

Fig. 3. Reduction Semantics of πm, πs, and πa.

Definition 12 (J). The set of process terms of the join-calculus, denoted by
PJ, is given by

P ::= 0 | y 〈z〉 | P1 | P2 | defD inP | X
J ::= y (x) | J1 | J2 and D ::= J . P | D1 ∧D2

for some names x, y, z ∈ N .

The interpretation is again as usual. 0, y 〈z〉, and P1 | P2 define the empty
process, an output capability, and parallel composition similar to πa. A defi-
nition defD inP defines a new receiver on fresh names, where D consists of
one or several elementary definitions J . P connected by ∧, J potentially joins
several reception patterns y (x) connected by |, and P is a process. Compared
to the pi-calculus, join patterns represent (recurrent) input capabilities that
are matched against outputs in order to instantiate and unguard an instance
of a guarded subterm. Note that the definition construct defD inP unifies the
concepts of restriction, input capabilities, and replication of the pi-calculus. In
def (J1 . P1)∧ . . .∧ (Jn . Pn) inP the subterms P1, . . . , Pn are guarded while P
is an unguarded subterm. Again, we omit an action’s object when it does not
effectively contribute to the behaviour of a term, e.g. we write def y (x).0 in y 〈z〉
as def y . 0 in y.

The sets of received variables rv(·) and defined variables dv(·) are inductively
defined as:

rv(y (x)) , {x } rv(J1 | J2) , rv(J1)] rv(J2)

dv(y (x)) , { y } dv(J1 | J2) , dv(J1) ∪ dv(J2)

dv(J . P) , dv(J) dv(D1 ∧D2) , dv(D1) ∪ dv(D2)

By convention, the received variables of composed join patterns have to be pair-
wise distinct. The bound names bn(P) of P are the union of the received and
defined variables in P . The free names of P are defined by its set of free variables,

24 K. Peters, U. Nestmann, U. Goltz

where fv(·):

fv(J . P) , dv(J) ∪ (fv(P) \ rv(J))

fv(D1 ∧D2) , fv(D1) ∪ fv(D2)

fv(y 〈z〉) , { y, z }
fv(defD inP) , (fv(P) ∪ fv(D)) \ dv(D)

fv(P1 | P2) , fv(P1) ∪ fv(P2)

Moreover, [7] define the core join-calculus cJ as a subcalculus of J that re-
stricts definitions to the form def y1 (x1) | y2 (x2) . P1 inP2, i.e., in the core
join-calculus definitions consist of a single elementary definition of exactly two
reception patterns.

The operational semantics of the join-calculus is given by an extension of
the chemical approach in [1]. The rules operate on so-called solutions R ` M,
where R and M are multisets. As done in [7], we only mention the elements of
the multisets that participate in the rule, separated by commas. The semantics
is given by the so-called heating and cooling rules

JoinJ ` P | Q
 ` P,Q
AndJ D ∧ E `
 D,E `
DefJ ` defD inP
 σdv(D) ` σdv(P)

and the reduction rule

RedJ J . P ` σrv(J) 7−→ J . P ` σrv(P)

where σdv instantiates the defined variables in D to distinct fresh names, and
σrv substitutes the transmitted names for the distinct received variables. Note
that the heating and cooling rules describe the underlying structural congruence
on processes, i.e., if P
 Q, Q 7−→ Q′, and Q′
 P ′ then also P 7−→ P ′. In the
following, we write P ≡ Q if P and Q differ only by applications of the heating
and cooling rules.

A.3 Communicating Sequential Processes (CSP)

The language CSP was introduced by Hoare [28, 29]. We consider two variants
of CSP that (instead of arbitrary action events) use in- and output prefixes. The
first variant CSPin allows input guards in the choice construct.

Definition 13 (CSPin). The set of process terms of the CSP-calculus with
input guarded choice, denoted by Pin, is given by

P ::= 0 | P \ n | P1 ‖ P2 | X | y!z → P | [C] | ? [C]

C ::= G | G � C and G ::= y? (x)→ P | τ → P

for some names n, x, y, z ∈ N .

On Distributability in Process Calculi 25

P \n restricts the name n to P . P1 ‖ P2 places its subterms in parallel. The pro-
cess y!z → P first sends a value z over y and then behaves as P . By convention,
the prefix operator→ is right associative. [C] describes a choice whose branches
are separated by �. In CSPin all branches of a choice are either guarded by an
input prefix y? (x) or the internal action τ . Similar to [26], we define replication
as non-deterministic repetition ? [guard1 → P1 � . . . � guardn → Pn].

The capabilities and guards are similar to the pi-calculus. Also the definitions
of free and bound names are standard and similar to the pi-calculus. Again, we
sometimes omit an action’s object when it does not effectively contribute to the
behaviour of a term, e.g. as in y? (x)→ 0, which would be written as y?→ 0.

The second variant of CSP that we consider is a subcalculus of CSPin that
allows only for internal choice.

Definition 14 (CSPno). The set of process terms of the CSP-calculus with
only internal choice, denoted by Pno, is given by

P ::= 0 | P \ n | P1 ‖ P2 | X | y!z → P | y? (x)→ P

| [C] | ? [C]

C ::= G | G � C and G ::= τ → P

for some names n, x, y, z ∈ N

Note that we define the variants CSPin and CSPno of the CSP-calculus such
that they are comparable to the variants CSPin and CSPno used in [26], because
we use these variants to restate the separation result of [26] between CSPin and
CSPno.

The operational semantics and structural congruence of CSPin and CSPno

can be derived from [29]. In contrast to communications in the pi-calculus, where
communication is always between exactly one input and one output guarded pro-
cess, communication steps in CSP reduce a single output guarded process and
arbitrarily many input guarded terms. Moreover, to perform a communication
step, all toplevel parallel components have to participate in this communication.
Interestingly, this communication mechanism in CSP leads to a separation re-
sult in Section D.2, while [16] presents a good and distributability-preserving
encoding between the respective counterparts πs without output guarded sums
and πa in the pi-calculus.

A.4 Labelled Processes

We assume for each process calculus a so-called labelling on the capabilities of
processes. The labelling has to ensure that (1) each capability has a label (2) no
label occurs more than once in a labelled term, (3) a label disappears only when
the corresponding capability is reduced in a reduction step, and (4), once it has
disappeared, it will not appear in the execution any more. [4] defines a labelling
method to establish such a labelling for processes of the pi-calculus. They derive
the labels from the syntax tree of processes. More precisely, they define the labels

26 K. Peters, U. Nestmann, U. Goltz

|

x(y)〈0,0〉 a(u)〈1,0〉

(νz)

|

z(k)〈00,1〉 z〈h〉〈01,1〉

0

0 0

Fig. 4. Tree-representation of a labelled term.

as tupels 〈s, n〉, where s is a string over { 0, 1 } representing the position of the
capability within the parallel structure of the term and n is a natural number
that represents the number of guards under which the capability is captured in
the term. Labels are assigned to a term P by the function L〈0,0〉 (P), where

L〈s,n〉 (0) = 0
L〈s,n〉 (π.P) = π〈s,n〉.L〈s,n+1〉 (P)
L〈s,n〉 (P1 | P2) = L〈s0,n〉 (P1) | L〈s1,n〉 (P2)
L〈s,n〉 ((νx)P) = (νx)L〈s,n〉 (P)
L〈s,n〉 (!P) = !〈s,n〉P

As example consider the labelled version

x(y)〈0,0〉 .
(

(νz)
(
z(k)〈00,1〉 | z〈h〉〈01,1〉

))
| a(u)〈1,0〉

of the term x(y) . ((νz) (z(k) | z〈h〉)) | a(u) as visualised in Figure 4.
[4] do not consider choice in the considered variant of the pi-calculus. To

capture that operator, we have replace L〈s,n〉 (π.P) = π〈s,n〉.L〈s,n+1〉 (P) by

L〈s,n〉

(∑

i∈I

πi.Pi

)
=

(∑

i∈I

πi.L〈s,n+1〉 (Pi)

)

〈s,n〉

Note that there is only a single label for each sum, because we consider a sum
as a single capability here. Moreover, [4] do not consider structural congruence
and define a labelled semantics which contains the rule

P
µ−−→ P ′

!P
µ−−→ P ′ | !P

On Distributability in Process Calculi 27

To ensure the above properties on the labelling within sequences of labelled
steps, they replace this rule by

P
µ−−→ P ′

!〈s,n〉P
µ−−→ L〈s0,n+1〉 (P ′) | !〈s1,n+1〉P

,

which ensures fresh labels for the reduced copy of P . To adapt this method to
our formalism we have to replace the structural congruence rule !P ≡ P | !P by

!〈s,n〉P ≡ L〈s0,n+1〉 (P ′) | !〈s1,n+1〉P

The remaining structural congruence rules do not need special attention, they
are simply changed to operate on labelled instead of unlabelled terms such that
labels are preserved. Note that, because of the rules for commutativity and asso-
ciativity of the parallel operator, applications of structural congruence destroy
the additional information on the structure on the term that is provided by the
labels. However, in contrast to [4] we make no use of these additional informa-
tions but use the labelling only to distinguish between different but syntactical
equivalent capabilities.

A labelling for the introduced variants of the join-calculus or the CSP-
calculus can be obtained in a similar way.

B Encodings and Quality Criteria

As defined above an encoding from LS into LT is a function J · K : PS → PT.
We often use S, S′, S1, . . . to range over PS and T, T ′, T1, . . . to range over PT.
We shortly present the five quality criteria of the framework of [8] for language
comparison.

The five conditions are divided into two structural and three semantic crite-
ria. The structural criteria include (1) compositionality and (2) name invariance.
The semantic criteria include (3) operational correspondence, (4) divergence re-
flection, and (5) success sensitiveness. It turns out that we do not need the
second criterion to derive the separation results of this paper. Thus, we omit it.
Note that a behavioural equivalence � on the target language is assumed for the
definition of name invariance and operational correspondence. Its purpose is to
describe the abstract behaviour of a target process, where abstract refers to the
behaviour of the source term.

Intuitively, an encoding is compositional if the translation of an operator
is the same for all occurrences of that operator in a term. Hence, the transla-
tion of that operator can be captured by a context that is allowed in [8] to be
parametrised on the free names of the respective source term.

Definition 15 (Criterion 1: Compositionality). The encoding J · K is com-
positional if, for every operator op : Nn×PmS → PS of LS and for every subset of
names N , there exists a context CNop ([·]1, . . . , [·]n+m) : Nn×PmS → PT such that,
for all x1, . . . , xn ∈ N and all S1, . . . , Sm ∈ PS with fn(S1)∪ . . .∪ fn(Sm) = N , it
holds that J op (x1, . . . , xn, S1, . . . , Sm) K = CNop (x1, . . . , xn, J S1 K , . . . , J Sm K).

28 K. Peters, U. Nestmann, U. Goltz

The first semantic criterion is operational correspondence. It consists of a
soundness and a completeness condition. Completeness requires that every com-
putation of a source term can be emulated by its translation. Soundness requires
that every computation of a target term corresponds to some computation of
the corresponding source term.

Definition 16 (Criterion 3: Operational Correspondence). The encoding
J · K satisfies operational correspondence if it satisfies:

Completeness: For all S Z=⇒S S
′, it holds J S K Z=⇒T� J S′ K.

Soundness: For all J S K Z=⇒T T , there exists an S′

such that S Z=⇒S S
′ and T Z=⇒T� J S′ K.

Note that the definition of operational correspondence relies on the equivalence
� to get rid of junk possibly left over within computations of target terms. Some-
times, we refer to the completeness criterion of operational correspondence as
operational completeness and, accordingly, for the soundness criterion as opera-
tional soundness. The next criterion concerns the role of infinite computations
in encodings.

Definition 17 (Criterion 4: Divergence Reflection). The encoding J · K
reflects divergence if, for every S, J S K 7−→ω

T implies S 7−→ω
S .

The last criterion links the behaviour of source terms to the behaviour of
their encodings. With Gorla [8], we assume a success operator X as part of the
syntax of both the source and the target language. Since X cannot be further
reduced and n(X) = fn(X) = bn(X) = ∅, the semantics and structural congruence
of a process calculus are not affected by this additional constant operator. The
test for reachability of success is standard.

Definition 18 (Success). A process P ∈ P may lead to success, denoted as
P ⇓X, if it is reducible to a process containing a top-level unguarded occurrence
of X, i.e., if P Z=⇒ P ′∧P ′ ≡ P ′′ | X for some P ′, P ′′. Moreover, we write P ⇓X!,
if P reaches success in every finite maximal execution.

Note that we choose may-testing here. However, this choice is not crucial. An en-
coding preserves the abstract behaviour of the source term if it and its encoding
answer the tests for success in exactly the same way.

Definition 19 (Criterion 5: Success Sensitiveness). The encoding J · K is
success sensitive if, for every S, S ⇓X iff J S K ⇓X.

This criterion only links the behaviours of source terms and their literal trans-
lations, but not of their derivatives. To do so, Gorla relates success sensitiveness
and operational correspondence by requiring that the equivalence on the target
language never relates two processes with different success behaviours.

Definition 20 (Success Respecting). � is success respecting if, for every P
and Q with P ⇓X and Q 6⇓X, it holds that P 6� Q.

On Distributability in Process Calculi 29

By [8] a “good” equivalence � is often defined in the form of a barbed equivalence
(as described e.g. in [15]) or can be derived directly from the reduction semantics
and is often a congruence, at least with respect to parallel composition. For the
separation results presented in this paper, we require only that � is a success
respecting reduction bisimulation.

Definition 21 ((Weak) Reduction Bisimulation). The equivalence � is a
(weak) reduction bisimulation if, for every T1, T2 ∈ PT such that T1 � T2, for
all T1 Z=⇒T T

′
1 there exists a T ′

2 such that T2 Z=⇒T T
′
2 and T ′

1 � T ′
2.

In this case, a good encoding respects also the ability to reach success in all
finite maximal executions.

Lemma 6. For all success respecting reduction bisimulations �⊆ PT×PT and
all terms T1, T2 ∈ PT such that T1 � T2, it holds T1 ⇓X! iff T2 ⇓X!.

Proof. Let us assume the opposite, i.e., there is some success respecting bisim-
ulation �⊆ PT × PT and two terms T1, T2 ∈ PT such that T1 � T2 and T1 ⇓X!

but not T2 ⇓X!. Then, for all T ′
1 ∈ PT with T1 Z=⇒T T

′
1, we have T ′

1 ⇓X but there
exists some T ′

2 ∈ PT such that T2 Z=⇒T T
′
2 and T ′

2 6⇓X.
Since � is a bisimulation (Definition 21), T1 � T2 and T2 Z=⇒T T ′

2 imply
that there exists some T ′′

1 ∈ PT such that T1 Z=⇒T T ′′
1 and T ′

2 � T ′′
1 . Because

� is success respecting (Definition 20), T ′
2 � T ′′

1 and T ′
2 6⇓X imply T ′′

1 6⇓X. This
violates the requirement that T1 ⇓X!, i.e., contradicts the assumption that for all
T ′
1 ∈ PT with T1 Z=⇒T T

′
1 we have T ′

1 ⇓X. We conclude that T1 ⇓X! iff T2 ⇓X!. ut
Moreover, in this case success sensitiveness preserves also the ability to reach

success in all finite maximal executions.

Lemma 7. For all operationally sound and success sensitive encodings J · K with
respect to some success respecting equivalence �⊆ PT ×PT and for all S ∈ PS,
if S ⇓X! then J S K ⇓X!.

Proof. Assume the opposite, i.e., there is an encoding that satisfies the criteria
operational soundness and success sensitiveness, � is success respecting, and
there is some S ∈ PS such that for all S′ ∈ PS with S Z=⇒S S

′ we have S′ ⇓X,
i.e., S ⇓X!, but there is some T ∈ PT such that J S K Z=⇒T T and T 6⇓X.

Since J · K is operationally sound (Definition 16), J S K Z=⇒T T implies that
there exists some S′′ ∈ PS and some T ′ ∈ PT such that S Z=⇒S S

′′ and T Z=⇒T

T ′ � J S′′ K. By Definition 18, then T 6⇓X and T Z=⇒T T ′ imply T ′ 6⇓X. Since �
respects success (Definition 20), T ′ � J S′′ K and T ′ 6⇓X imply J S′′ K 6⇓X. Because
J · K is success sensitive (Definition 19), then also S′′ 6⇓X, which contradicts the
assumption that S ⇓X!. We conclude that if S ⇓X! then J S K ⇓X!. ut

C Distributability

Above we state that two executions of a term P are distributable iff P is dis-
tributable into two subterms such that each performs one of these executions.
Here, we prove this relationship between Definition 3 and Definition 6.

30 K. Peters, U. Nestmann, U. Goltz

Lemma 8. Let L = 〈 P, 7−→ 〉 be a process calculus, P ∈ P, and A1, . . . , An
a set of executions of P . The executions A1, . . . , An are pairwise distributable
within P iff P is distributable into P1, . . . , Pn ∈ P such that, for all 1 ≤ i ≤ n,
Ai is an execution of Pi, i.e., during Ai only capabilities of Pi are reduced.

Proof. Let ≡ be the structural congruence of L.
Assume that the set of executions A1, . . . , An are pairwise distributable in

P . By Definition 6 no pair of executions Ai and Aj with 1 ≤ i ≤ n, 1 ≤ j ≤ n,
and i 6= j reduces the same not distributable capability. Moreover, since for all
1 ≤ i ≤ n the sequence of steps Ai is an execution of P , i.e., P 7−→ Pi,1 7−→
. . . 7−→ Pi,m for some Pi,1, . . . , Pi,m ∈ P, none of these executions reduces a
capability produced, i.e., unguarded, by a step in one of the other executions in
the set {A1, . . . , An }. Thus, whenever an execution Ai reduces some capability
that was guarded in P , then Ai also reduces the guarding capability. Hence,
we can choose P1, . . . , Pn such that, for all 1 ≤ i ≤ n, Pi is an unguarded
subterm of P ′ or can be separated in P ′ by the chemical approach with P ′ ≡ P
and Pi contains at least all capabilities reduced in Ai. Note that to ensure that
all guarded subterms and constants of P are contained in at least one of the
terms P1, . . . , Pn, as it is required by the last condition of Definition 3, some of
these terms may contain subterms that are not reduced by one of the executions
A1, . . . , An. Since different executions Ai and Aj with 1 ≤ i ≤ n, 1 ≤ j ≤ n,
and i 6= j reduce the same capability only if it is recurrent and distributable, by
Definition 3, the terms P1, . . . , Pn are distributable in P .

Now, assume that P is distributable into n terms P1, . . . , Pn ∈ P such that,
for all 1 ≤ i ≤ n, Ai is an execution of Pi, i.e., during Ai only capabilities of
Pi are reduced. Then, by Definition 3, no capability with the same label occurs
twice in P1, . . . , Pn. Hence, since Ai reduces only capabilities in Pi, no two ex-
ecutions in A1, . . . , An reduces the same capability. Thus, by Definition 6, then
all executions in {A1, . . . , An } are pairwise distributable in P . ut

Moreover, we prove Lemma 1.

Proof (Proof of Lemma 1). Let LS = 〈 PS, 7−→S 〉 and let LT = 〈 PT, 7−→T 〉 be
two process calculi.

Let us assume that the set of executions A1, . . . , An is pairwise distributable
within S. Then, by Lemma 8, S is distributable into n terms S1, . . . , Sn ∈ P such
that, for all 1 ≤ i ≤ n, Ai is an execution of Si, i.e., during Ai only capabilities of
Si are reduced. Because J · K preserves distributability, by Definition 4, there are
some T1, . . . , Tn ∈ PT that are distributable within J S K such that Ti � J Si K
for all 1 ≤ i ≤ n. Let us fix some arbitrary i ∈ { 1, . . . , n }. By operational
completeness in Definition 16, all sequences of steps of Si are emulated by its
encoding, i.e., Si Z=⇒S S

′
i implies J Si K Z=⇒S� J S′

i K. Because � is some reduc-
tion bisimulation, Ti � J Si K implies that also Ti has to emulate the executions
of Si independent of the other encoded subterms, i.e., J Si K Z=⇒S� J S′

i K implies
Ti Z=⇒S� J S′

i K. We conclude that for all 1 ≤ i ≤ n the term Ti emulates the
sequence of steps Ai. Then, again by Lemma 8, all these emulations are pairwise
distributable within J S K. ut

On Distributability in Process Calculi 31

P

a

b

c

×
a ‖ b

a ‖ c

×
b ‖ c

Fig. 5. Visualisation of the Synchronisation Pattern M.

D Synchronisation Pattern

Within this section we present the proof of our main results.

D.1 The Synchronisation Pattern M in πa and J

Proof (Proof of Lemma 2). Two steps are in conflict, if performing one step dis-
ables the other step. To do so the first step has to consume something necessary
to perform the other step. In the join-calculus, it is not possible to consume input
capabilities, i.e., definitions. Hence, the only way for a step to disable a former
alternative step is to consume one of its necessary outputs. In the join-calculus,
communication is allowed only on defined variables, i.e., to consume an output
message the channel of that message has to be defined in a definition. Note that
defining the syntactical representation of a name twice in different definitions
results in two different names. Thus, if the first step consumes an output neces-
sary to perform the second step, then both steps share a defined name. Because
of that, both steps must use the same definition, i.e., are not distributable. We
conclude that for each list of alternative steps S = [s1, . . . , sn], where for all
1 ≤ i < n the step si is in conflict with the step si+1, all steps in S use exactly
the same definition. Thus, all pairs of steps in the set S = { s1, . . . , sn } are
pairwise local. ut

Figure 5 visualises the synchronisation pattern M as conditions on a state P
in a step transition system. Note that a, b, and c are not labels. They serve just
to distinguish different steps. Moreover, x ‖ y refer to the parallel execution of
x and y, given a step semantics. The following example visualises a local M in
the join-calculus.

Example 2 (Local M in the join-calculus). Consider the J-term

P = def x (z) | y (z′) . z 〈z′〉 in (x 〈u〉 | x 〈v〉 | y 〈u〉 | y 〈v〉) .

To show that P is an M, we can for example choose:

– a : P 7−→ u 〈u〉 | def x (z) | y (z′) . z 〈z′〉 in (x 〈v〉 | y 〈v〉),
– b : P 7−→ u 〈v〉 | def x (z) | y (z′) . z 〈z′〉 in (x 〈v〉 | y 〈u〉), and

32 K. Peters, U. Nestmann, U. Goltz

– c : P 7−→ v 〈v〉 | def x (z) | y (z′) . z 〈z′〉 in (x 〈u〉 | y 〈u〉).

We observe that u 〈u〉, u 〈v〉, and v 〈v〉 are pairwise different. Moreover, the
steps a and c are parallel, but b disables a as well as c, because it consumes
x 〈u〉 necessary for a and y 〈v〉 necessary for c. Since P does only contain a single
definition, all its steps are local. Hence, P is a local M in the join-calculus. And,
since P is in fact a cJ-term, it is also a local M in the core join-calculus.

We show that all M in the join-calculus are local.

Proof (Proof of Lemma 3). Assume the opposite, i.e., assume there is a non-
local M in the join-calculus. Let us denote the corresponding J-term as P . By
Definition 7, P can perform three alternative steps a, b, and c such that a and c
are distributable but b is in conflict with both a and c. By Lemma 2, all conflicts
in the join-calculus are local. Thus, all three steps a, b, and c are pairwise local,
which contradicts the assumption that a and c are distributable. ut

As mentioned in Section 4.2, we use the following example as counterexample
to show that no good encoding from πa into J can preserve distributability.

Example 3 (Running Counterexample). The non-local M

S = (y〈u〉 | y(x) .x) | (y〈v〉 | y(x) . (x | x) | u.v.v.X) (E1)

reaches success iff S performs both of the distributable steps a and c, where

Step a: S 7−→ Sa with Sa = u | y〈v〉 | y(x) . (x | x) | u.v.v.X and Sa ⇓X!,
Step b: S 7−→ Sb with Sb = y(x) .x | y〈v〉 | u | u | u.v.v.X and Sb 6⇓X, and
Step c: S 7−→ Sc with Sc = y〈u〉 | y(x) .x | v | v | u.v.v.X and Sc ⇓X!.

To show that no good and distributability-preserving encoding can emula-
te E1, we use the fact that two distributable reductions in the join-calculus
cannot reduce the same defined variable.

Lemma 9. Let P ∈ PJ and let A and C denote two distributable executions of
P . Then the set of defined variables of all outputs reduced in A and all outputs
reduced in C are disjoint.

Proof. Without loss of generality let us assume that there are no name clashes in
P . Let DA denote the set of defined variables of all outputs reduced in A, and let
DC denote the corresponding set for C. Let us assume A and C are distributable
but DA ∩DC 6= ∅. Then there is some defined name y such that an output on
channel y is reduced in one step sa of A, and an output on channel y is reduced
in one step sc of C. Since for each defined name there is exactly one definition
in the join-calculus, there is exactly one definition defining y. Because each step
that reduces an output on channel y has in the join-calculus to use this definition,
by Definition 5, sa and sc are not distributable. Hence, by Definition 6, A and
C are not distributable, which contradicts our assumption. ut

Hence the encoding has to split up the conflict in the counterexample.

On Distributability in Process Calculi 33

Proof (Proof of Lemma 4). By operational completeness (Definition 16), all three
steps of S have to be emulated in J S K, i.e., there exists Ta, Tb, Tc ∈ PJ such that
J S K Z=⇒ Ta � J Sa K, J S K Z=⇒ Tb � J Sb K, and J S K Z=⇒ Tc � J Sc K. Because
S has no infinite execution and J · K reflects divergence (Definition 17), J S K
has no infinite execution. By success sensitiveness (Definition 19), Lemma 6 and
7, and because � is success respecting (Definition 20), we have Ta ⇓X!, Tb 6⇓X,
Tc ⇓X!, and Ta 6� Tb 6� Tc. We conclude that, for all Ta, Tb, Tc ∈ PJ such that
Ta � J Sa K, Tb � J Sb K, and Tc � J Sc K and for all sequences A : J S K Z=⇒ Ta,
B : J S K Z=⇒ Tb, and C : J S K Z=⇒ Tc, there is a conflict between a step of A
and a step of B, and there is a conflict between a step of B and a step of C.
Note, that since Tb 6⇓X but Ta ⇓X! and Tc ⇓X!, the conflict between a and b (or
b and c) has to be translated into a conflict of A and B (or B and C). It is not
possible, that the emulation of b disables all ways to reach success after Ta or Tc
is reached.

Because J · K preserves distributability (Definition 4) and because of Lem-
ma 1, the distributable steps a and c of S have to be translated into distributable
executions, i.e., there is at least one A and one C such that these two execu-
tions are distributable. By Lemma 8, this implies that J S K is distributable into
T1, T2 ∈ PJ such that A is an execution of T1 and C is an execution of T2.
By Lemma 2, the conflicts between A, B, and C are such that B and A as
well as B and C compete for some output but, by Lemma 9, A and C do not
reduce the same outputs. Hence, the two conflicts cannot be ruled out in a single
step. Moreover, the reduction steps of A that lead to the conflicting step with
B and the reduction steps of C that lead to the conflicting step with B are
distributable, because A and C are distributable. We conclude, that there is at
least one emulation of b, i.e., one execution B : J S K Z=⇒ Tb � J Sb K, starting
with two distributable executions such that one is (in its last step) in conflict
with the emulation of a in A : J S K Z=⇒ Ta � J Sa K and the other one is in
conflict with the emulation of c in C : J S K Z=⇒ Tc � J Sc K. In particular this
means that also the two steps of B that are in conflict with a step in A and a
step in C are distributable.

Hence, there is no possibility to ensure that these two conflicts are decided
consistently, i.e., there is a maximal execution of J S K that emulates A but not
C as well as a maximal execution of J S K that emulates C but not A. ut

Finally, we show that there cannot exist a good and distributability-preser-
ving encoding.

Proof (Proof of Theorem 1). Assume the opposite. Then there is a good and
distributability-preserving encoding of the S given by E1. By the proof of Lem-
ma 4, there is a maximal execution of J S K in that a but not c is emulated and
success is reached, i.e., there is an execution such that the emulation of a leads
to success without the emulation of c.

For encodings as described above, there exists a context C : P2
J → PJ—the

combination of the surrounding context and the context introduced by composi-
tionality (Definition 15)—such that J S K = C (J S1 K , J S2 K), where S1 = y〈u〉 |

34 K. Peters, U. Nestmann, U. Goltz

y(x) .x and S2 = y〈v〉 | y(x) . (x | x) | u.v.v.X. Let S′
2 = y(x) . (x | x) | u.v.v.X.

Since fn(S2) = fn(S′
2), also S1 | S′

2 has to be translated by the same context,
i.e., J S1 | S′

2 K = C (J S1 K , J S′
2 K). Note that S and S1 | S′

2 differ only by a
capability necessary for step c, but step a and b are still possible. We con-
clude, that if C (J S1 K , J S2 K) reaches some Ta ⇓X! without the emulation of c,
then C (J S1 K , J S′

2 K) reaches at least some state T ′
a such that T ′

a ⇓X. Hence,
J S1 | S′

2 K ⇓X but (S1 | S′
2) 6⇓X which contradicts success sensitiveness. ut

D.2 Distributability of CSP

In the following, we show how the proof method behind the above separation
result can be transferred to other process calculi. Accordingly, we consider two
variants of CSP introduced in Section A.3. First we replace the source language
πa by CSPin—a variant of CSP with input and output guards and input guarded
choice. Afterwards we replace the target language J by CSPno—a subcalculus of
CSPin, where choice is only internally branching. Note that these two languages
were already compared in [26]. Here, we use them rather to explain how the
separation result above is transferred than to prove new results. For simplicity,
we consider only compositional encodings in the following, but the results hold
as well for combinations of an inner compositional encoding surrounded by a
fixed context parametrised on the free names of the source terms as considered
by Theorem 1.

Changing the source language is often the easier task, because it usually
suffices to show that the new source language is expressive enough to provide
the counterexample with the properties required by the absolute result. In the
present case, we have to show that CSPin contains an M similar to E1 and to
recycle the argumentation in the proof of Theorem 1, thereby adapting it to the
new source language. We gain the absolute result and Lemma 4 for free, because
its proofs do not use any information about the source language except that it
provides E1.

Example 4 (Non-Local M in CSPin). Consider

S = S1 ‖ (S2 ‖ S3) (E2)

with S, S1, S2, S3 ∈ Pin, where S1 = [(τ → 0) � (b?→ 0)], S2 = b! → 0, and
S3 = [(b?→ 0) � (τ → X)]. S can perform three different alternative steps
modulo structural congruence:

Step a: S 7−→ Sa with Sa = 0 ‖ (S2 ‖ S3)
Step b: S 7−→ Sb with Sb = 0 ‖ (0 ‖ 0)
Step c: S 7−→ Sc with Sc = S1 ‖ (S2 ‖ X)

If the first step is either a or c then S can perform the respective other step as
second step. Moreover, the steps a and c are parallel and distributable but b is
in conflict with a and c. In case b is not performed, any maximal execution of S
has two steps and leads to success. Hence, Sa ⇓X!, Sb 6⇓X, and Sc ⇓X!.

On Distributability in Process Calculi 35

Since E2 and E1 have the same properties, we can show a separation result
between CSP and J similar to Theorem 1.

Theorem 3. There exists no good and distributability-preserving encoding from
CSPin into J.

Proof. Assume the opposite. Because S of Example 4 and E1 have the same
properties, Lemma 4 holds also for S. Thus, there is a good and distributability-
preserving encoding of S and there is a maximal execution of J S K in that a but
not c is emulated and success is reached, i.e., there is an execution such that the
emulation of a leads to success without the emulation of c.

Let S′
3 = [(b?→ 0) � (τ → 0)]. Because of compositionality (cf. Defini-

tion 15) and since fn(S3) = fn(S′
3), the terms J S K and J S1 ‖ (S2 ‖ S′

3) K differ
only by the encoding of S3. Note that S ⇓X and (S1 ‖ (S2 ‖ S′

3)) 6⇓X, but the
possibilities to perform the steps a, b, and c remain unchanged. We conclude, that
if J S K reaches some Ta ⇓X! without the emulation of c, then J S1 ‖ (S2 ‖ S′

3) K
reaches as least some state T ′

a such that T ′
a ⇓X. Hence, J S1 ‖ (S2 ‖ S′

3) K ⇓X but
(S1 ‖ (S2 ‖ S′

3)) 6⇓X which contradicts success sensitiveness. ut

In case of the target language, we have to adapt the proof of Lemma 4.
Therefore, we have first to revise the absolute result. To do so, we show that,
because of the restrictive communication mechanism, without guards in choices
all conflicts in CSPno are between τ -steps of a single choice only. Since choice is
not distributable, all conflicts are local.

Lemma 10. All conflicts in CSPno are between τ -steps and are local.

Proof. Two steps are in conflict, if performing one step disables the other step by
the consumption of a capability necessary to perform the other step. In CSPno a
reduction step is either a τ -step or it reduces all unguarded capabilities of some
subject. The later case is possible only if all parallel processes have an unguarded
prefix with that subject and if there are no two unguarded output prefixes on
this subject. Since all unguarded capabilities of some subject are reduced, an
alternative step is either again a τ -step or a step on another subject. Without
guards in choice it is not possible to remove an output or input prefix of subject
y in a step on subject x. Thus, the only chance for conflicts is between τ -steps.
The only way a τ -step may consume something necessary for an alternative
step is within a choice. Since in CSPno only internal choice is allowed, i.e., all
branches of a choice are guarded by τ , all conflicts in CSPno are between two
τ -steps reducing the same internal choice. Since choice is not distributable, such
steps are always local. ut

As a consequence, all M in CSPno are also local, because of the conflict
between b and a or c. Following the line of argumentation in Section 4.2, we
show next that each good encoding of an M has to split up the conflicts of b with
the steps a and c. It turns out that to adapt the proof of Lemma 4 it suffices
to replace the argument on the absolute result in Lemma 2 by our new absolute
result above.

36 K. Peters, U. Nestmann, U. Goltz

Lemma 11. Any good and distributability-preserving encoding from πa (or from
CSPin) into CSPno has to split up the conflicts in S given by E1 (or by E2) of
b with a and c such that there exists a maximal execution in J S K in which a is
emulated but not c, and vice versa.

Proof. The proof of Lemma 11 is similar to the proof of Lemma 4 above. It
suffice to replace the sentences

By Lemma 2, the conflicts between A, B, and C are such that B and
A as well as B and C compete for some output but, by Lemma 9, A and
C do not reduce the same outputs. Hence, the two conflicts cannot be
ruled out in a single step.

by

By Lemma 10, the conflicts between A, B, and C are such that B
and A as well as B and C compete for some τ -capabilities within the
same choice. Because the choice operator is not distributable but A and
C are, the two conflicts cannot be ruled out in a single step.

Moreover, in case of E2, replace Ta, Tb, Tc ∈ PJ by Ta, Tb, Tc ∈ Pin. ut

In this case we gain the argumentation in the proof of Theorem 1 and The-
orem 3 for free.

Theorem 4. There exists no good and distributability-preserving encoding from
πa (or CSPin) into CSPno.

Proof. In case of πa, the proof of Theorem 4 is similar to the proof of Theorem 1.
It suffice to replace Lemma 4 by Lemma 11.

Else if the source language is CSPin, the proof is similar to the proof of
Theorem 3. Again it suffice to replace Lemma 4 by Lemma 11. ut

D.3 The Synchronisation Pattern ?

Above we stated that in πs each step between two distributable subprocesses
reduces only outputs in one subprocess and only inputs in the other. We now
prove this statement.

Lemma 12. For all P ∈ Ps and for all P1, P2 ∈ Ps that are distributable within
P , a reduction step between P1 and P2 either reduces only output guards in P1

and only input guards in P2, or vice versa.

Proof. By the reduction semantics of πs in Figure 3, the derivation of each re-
duction step results from exactly one axiom, i.e., there are no branches in deriva-
tion trees of reduction steps in πs. Moreover, a step between two distributable
processes, i.e., a step that uses capabilities of two parallel composed processes,
cannot result from Taum,s. By the Axiom Comm,s an output guard within a
sum and an input guard of another sum are reduced, but no other output or

On Distributability in Process Calculi 37

input guards are reduced outside the mentioned two sums. Remember that in πs
it is not allowed to place input and output guards within the same sum. Hence,
if the step reduces an output guard in P1 it has to reduce input guards in P2 but
can neither reduce also input guards in P1 nor output guards in P2. The same
holds if we swap the roles of P1 and P2. ut

Because of that there is no ? in πs.

Proof (Proof of Lemma 5). Assume the opposite, i.e., assume there is some
P ∈ Ps such that a : P 7−→ Pa, b : P 7−→ Pb, c : P 7−→ Pc, d : P 7−→ Pd, and
e : P 7−→ Pe for some Pa, Pb, Pc, Pd, Pe ∈ Ps that are pairwise different such
that a is in conflict with b, b is in conflict with c, c is in conflict with d, d is in
conflict with e, e is in conflict with a, and all pairs of steps in { a, b, c, d, e } that
are not in conflict are parallel in P . Note that a communication step in πs always
reduces a sum of output guarded subterms and a sum of input guarded subterms.
Accordingly, let ix be the capability of the sum of input guards reduced by step
x ∈ { a, b, c, d, e } in P and ox be the capability of the sum of output guards
reduced by step x, respectively.

Since a and c are distributable in P , by Lemma 8, P is distributable into
the terms P1, P2 ∈ Ps such that a is a step of P1 and c is a step of P2, i.e.,
there exists P ′

1, P
′
2 ∈ Ps and a sequence of names x̃ such that P ≡ (νx̃) (P1 | P2),

Pa ≡ (νx̃) (P ′
1 | P2), and Pc ≡ (νx̃) (P1 | P ′

2). Because b is in conflict with a and c,
it reduces one capability in P1 and one capability in P2, i.e., b is a communication
between P1 and P2. By Lemma 12, b reduces either only input guards or only
output guards in P1. Let us assume that b reduces only output guards in P1.
Since b is in conflict with a, it reduces an unguarded output guard in oa = ob,
i.e., a and b compete for outputs in the same sum. Then, again by Lemma 12,
the conflict between b and c comes from a competition for the capability ib = ic
in P2. b and d are distributable, but c is in conflict with b and d. We know
that the conflict between b and c comes from the competition for the capability
in ib = ic. By the same argumentation as before, then c and d compete for the
capability in oc = od. Furthermore, d and e compete for the capability in id = ie.
And thus, e and a compete for oe = oa. But then e and a as well as a and b
compete for capabilities in oa. Because e and b are distributable and sums are
not distributable, they cannot reduce the same output guarded sum. This is a
conflict. (By the way, even if it would have been possible to distribute the output
guarded sum, we could apply Lemma 12 once more to derive the conflict as in
the second case.)

Now, in order to capture the other case, let us assume that a and b compete
for ia = ib. Thus, b and c compete for ob = oc, c and d compete for ic = id, d
and e compete for od = oe, and e and a compete for ie = ia. By Lemma 12, if a
is in conflict with e and b, it is not possible that a reduces an input guard of e
as well as of b, i.e., again this is a conflict. ut

The following example shows that πm, in contrast to πs, can express the
synchronisation pattern ?. We use this example as running counterexample in
the following.

38 K. Peters, U. Nestmann, U. Goltz

Example 5 (? in πm). Consider a term S ∈ Pm such that

S = a+ b.S1 | b+ c.S2 | c+ d.S3 | d+ e.S4 | e+ a.S5 (E3)

for some S1, . . . , S5 ∈ { 0,X}. Then, S can perform the steps

Step a: S 7−→ Sa with Sa = b+ c.S2 | c+ d.S3 | d+ e.S4 | S5,

Step b: S 7−→ Sb with Sb = S1 | c+ d.S3 | d+ e.S4 | e+ a.S5,

Step c: S 7−→ Sc with Sc = a+ b.S1 | S2 | d+ e.S4 | e+ a.S5,

Step d: S 7−→ Sd with Sd = a+ b.S1 | b+ c.S2 | S3 | e+ a.S5, and

Step e: S 7−→ Se with Se = a+ b.S1 | b+ c.S2 | c+ d.S3 | S4.

By Definition 8, S is a non-local ?.

Unfortunately, the same cyclic dependencies between the conflicts in ? that
are used in the proof of Lemma 5 prevent us from initialising S1, . . . , S5 such
that Sx ⇓X! and Sy 6⇓X for each pair of conflicting steps x and y. Note that in the
proof of Lemma 4 we use the properties Sa ⇓X!, Sb 6⇓X, and Sc ⇓X! to ensure that
the conflict of b with a and c has to be translated into a conflict of B : J S K Z=⇒
Tb � J Sb K with A : J S K Z=⇒ Ta � J Sa K and C : J S K Z=⇒ Tc � J Sc K. Here,
we use compositionality and the fact that initialising Si for 1 ≤ i ≤ 5 by either
Xor 0 has no consequence on the surrounding contexts in the encoding, to show
that the encoding has to preserve also the conflicts in E3.

Lemma 13. Any good and distributability-preserving encoding J · K from πm
into πs has to translate the conflicts in S given by E3 into conflicts of the cor-
responding emulations.

Proof. By operational completeness (Definition 16), all five steps of S have to
be emulated in J S K, i.e., there exists Ta, Tb, Tc, Td, Te ∈ Ps such that J S K Z=⇒
Tx � J Sx K for all x ∈ { a, b, c, d, e }. Because J · K preserves distributability, for
each pair of steps x and y that are parallel in S, the emulations X : J S K Z=⇒ Tx
and Y : J S K Z=⇒ Ty such that Tx � J Sx K and Ty � J Sy K are distributable.
Note that X and Y refer to the upper case variants of x and y, respectively.

In Example 5 we do not initialise S1, . . . , S5. Now, we consider all variants
of S, where S1, . . . , S5 ∈ { 0,X}, i.e., each of these terms is either chosen to be
empty or to present an unguarded occurrence of success. Since n(X) = n(0) = ∅
and because of compositionality (Definition 15), the encodings of these variants
of S differ only by the encodings of S1, . . . , S5. The remaining operators and,
hence, the remaining term has to be translated in exactly the same way. Accord-
ingly, the encoding of a term S1, . . . , Sn cannot influence the emulation of the
steps of S.

Thus, for each triple of steps x, y, z ∈ { a, b, c, d, e } in S such that y is in
conflict with x and z but x and z are parallel, we can choose Sf(x) = X= Sf(z)

On Distributability in Process Calculi 39

and initialise all other terms in {S1, . . . , S5 } by 0, where

f (x) =

1, if x = b

2, if x = c

3, if x = d

4, if x = e

5, if x = a

for all u ∈ { a, b, c, d, e }, such that Sf(x) ⇓X! and Sf(z) ⇓X! but Sf(y) 6⇓X. Then,
also Sx ⇓X! and Sz ⇓X! but Sy 6⇓X. Now we can proceed as in the proof of
Lemma 4. Because S has no infinite execution and J · K reflects divergence, J S K
has no infinite execution. By success sensitiveness, Lemma 6 and 7, and because
� is success respecting, we have Tx ⇓X!, Ty 6⇓X, Tz ⇓X!, and Tx 6� Ty 6� Tz.
We conclude that, for all Tx, Ty, Tz ∈ PJ such that Tx � J Sx K, Ty � J Sy K,
and Tz � J Sz K and for all sequences X : J S K Z=⇒ Tx, Y : J S K Z=⇒ Ty, and
Z : J S K Z=⇒ Tz, there is a conflict between a step of X and a step of Y , and
there is a conflict between a step of Y and a step of Z. ut

Similar to Section 4.2, we show that each good encoding of the counterex-
ample requires that a conflict has to be distributed.

Lemma 14. Any good and distributability-preserving encoding J · K from πm
into πs has to split up a least one of the conflicts in S given by E3 such that there
exists a maximal execution in J S K that emulates only one source term step.

Proof. By operational completeness (Definition 16), all five steps of S have to be
emulated in J S K, i.e., there exists Ta, Tb, Tc, Td, Te ∈ Ps such that X : J S K Z=⇒
Tx � J Sx K for all x ∈ { a, b, c, d, e }, where X is the upper case variant of x.
By Lemma 13, for all Ta, Tb, Tc, Td, Te ∈ Ps and all x ∈ { a, b, c, d, e } such that
Tx � J Sx K, there is a conflict between a step of the following pairs of emulations:
A and B, B and C, C and D, D and E, and E and A.

Since J · K preserves distributability (Definition 4) and by Lemma 4, each
pair of distributable steps in S has to be translated into emulations that are
distributable within J S K. Let X,Y, Z ∈ {A,B,C,D,E } be such that X and
Z are distributable within J S K but Y is in conflict with X as well as Z. By
Lemma 8, this implies that J S K is distributable into T1, T1 ∈ Ps such that X
is an execution of T1 and Z is an execution of T2. Since Y is in conflict with X
and Z and because all three emulations are executions of J S K, there is one step
of Y that is in conflict with one step of X and there is one (possibly the same)
step of Y that is in conflict with one step of Z. Moreover, since X and Z are
distributable, if a single step of Y is in conflict with X as well as Z then this
step is a communication between T1 and T2.

Assume that for all such combinations X, Y , and Z, the conflicts between Y
and X or Z are ruled out by a single step of Y , i.e., both conflicts are ruled out
by a communication step between some capabilities of X and some capabilities
of Z. By Lemma 12, then this step reduces only input guards in one of the exe-
cutions X and Z and only output guards in the respective other, i.e., X and Y

40 K. Peters, U. Nestmann, U. Goltz

compete either only for input or only for output guards and Y and Z compete
for the respective other kind of guards. Without loss of generality let us assume
that A and B compete for some output guards and, thus, B and C compete for
some input guards, C and D compete for some output guards, D and E compete
for some input guards, E and A compete for some output guards, and A and B
compete for some input guards. This is a contradiction, because, by Lemma 12,
A and B cannot compete for both input and output guards.

We conclude that there is at least one triple of emulations X, Y , and Z such
that the conflict of Y with X and with Z results from two different steps in Y .
Because X and Z are distributable, the reduction steps of X that leads to the
conflicting step with Y and the reduction steps of Z that leads to the conflicting
step with Y are distributable. We conclude, that there is at least one emulation
of y, i.e., one execution Y : J S K Z=⇒ Ty � J Sy K, starting with two distributable
executions such that one is (in its last step) in conflict with the emulation of x in
X : J S K Z=⇒ Tx � J Sx K and the other one is in conflict with the emulation of
z in Z : J S K Z=⇒ Tz � J Sz K. In particular this means that also the two steps of
Y that are in conflict with a step in X and a step in Z are distributable. Hence,
there is no possibility to ensure that these two conflicts are decided consistently,
i.e., there is a maximal execution of J S K that emulates X but neither Y nor Z.

In the set {A,B,C,D,E } there are—apart from X, Y , and Z—two remain-
ing executions. One of them, say X ′, is in conflict with X and the other one,
say Z ′, is in conflict with Z. Since X is emulated successfully, X ′ cannot be
emulated. Moreover, note that Y and Z ′ are distributable. Thus, also Z ′ and
the partial execution of Y that leads to the conflict with Z are distributable.
Moreover, also the step of Y that already rules out Z cannot be in conflict with
a step of Z ′. Thus, although the successful completion of Z is already ruled out
by the conflict with Y , there is some step of Z left, that is in conflict with one
step in Z ′. Hence, the conflict between Z and Z ′ cannot be ruled out by the
partial execution described so fare that leads to the emulation of X but forbids
to complete the emulations of X ′, Y , and Z. Thus, it cannot be avoided that Z
wins this conflict, i.e., that also Z ′ cannot be completed. We conclude that there
is a maximal execution of J S K such that only one of the five source term steps
of S is emulated. ut

Since each maximal execution of E3 consists of exactly two distributable
steps, Lemma 14 violates the requirements on a good encoding.

Proof (Proof of Theorem 2). Assume the opposite, i.e., there is a good and
distributability-preserving encoding J · K from πm into πs, and, thus, also of S
given by E3. Since S has no infinite execution and because J · K is divergence
reflecting, J S K has no infinite execution. By Lemma 14 there exists a maximal
execution in J S K in which only one source term step is emulated. Let us denote
this step by x ∈ { a, b, c, d, e }. Hence, J S K Z=⇒ Tx Z=⇒ T with T 67−→ for
some T ∈ Ps, because there is no infinite execution. Moreover, by operational
soundness, Tx � T , because after the emulation of x no other step is emulated.
Note that since we do not fix S1, . . . , S5 in Example 5 and by the argumentation

On Distributability in Process Calculi 41

in the Lemma 13 and 14, the above conditions hold for all variants of S such
that S1, . . . , S5 ∈ { 0,X}. Let us consider the case that Sf(x) = 0 = Sf(y) but all
other terms in {S1, . . . , S5 } are equal to X, where f is the function defined in the
proof of Lemma 13 and y is a step that is parallel to x within S. Then, Sx ⇓X
but Sx 6⇓X!, i.e., the step x may lead to success (in case the next step is not y) or
it does not lead to success (in case the next step is y). By success sensitiveness
and because � is success sensitive, then also Tx ⇓X and T ⇓X but Tx 6⇓X! and
T 6⇓X!. But this contradicts the property that T 67−→, because a term in πs that
cannot perform a step either already has an unguarded occurrence of success or
can never reach some. We conclude that there cannot be such an encoding. ut

References

26. L. Bougé. On the Existence of Symmetric Algorithms to Find Leaders in Networks
of Communicating Sequential Processes. Acta Informatica, 25(4):179–201, 1988.

27. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, L’École Polytechnique, 1998.

28. C. A. R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666–677, 1978.

29. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science, 2004. Electronic version of Communicating Sequential
Processes, first published in 1985.

